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Montroll-Weiss Problem, Fractional Equations,
and Stable Distributions

Vladimir V. Uchaikin?
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Asymptotic solutions of the m-dimensional Montroll-Weiss' jump problem are
obtained. They cover both the subdiffusive and the superdiffusive regime, obey
fractional differential equations, and are expressed in terms of stable distributions.
Analytical investigation and numerical calculations of anomalous diffusion
distributions are performed and their properties are discussed.

1. INTRODUCTION

The Montroll-Weiss (MW) problem [17] is formulated as the problem
of finding the probability distribution p(x, t), x e R™, for a particle performing
random instantaneous jumps Ry, Ry, ..., R, ... € R™a random waiting
times Ty, Ty + Tp, ..., Ty + T, + Tj, ..., Ti € RL. The random variables
R and T; are independent and their distribution densities p(x) and q(t) do not
depend on time and place, respectively. Numerous examples of applications
of the model to concrete physical and biological systems and processes are
reviewed inrefs. 3, 12, and 28. We concentrate only on mathematical aspects
of this problem.

The Fourier—Laplace transform of the distribution

p(k, \) = J

R

dxj dt €< Mp(x, 1), keRM

0

is easily expressed in terms of the Laplace transform of the waiting-time
distribution
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a0 = J " () o

0

and the Fourier transform of the jump distribution
P9 = | _e*pro) o
Rm

If the particle beginsits history waiting at the origin of space-time coordinates
(x =0, t = 0), then

__1-an
pk, A) = ML = p(9a0N] (11)

This is just the Montroll-Weiss result.

We will suppose the jump distribution p(x) to be isotropic, so p(k) is a
function of |k| only.

At large time when the particle has performed many jumps and the
spatial distribution of probability becomes wide, the density

p(x, t) = i"{(2m) ™1 J

R

dk J d\ ek Mp(K; \)
m L

is determined by the behavior of the transform p(k, \) in the region of small
k and .
If

|| ol o= ) 12
and
[ atoeen = L3
0
are finite, then
1-g\) ~(T), A-0 (1.4)
and
p(k) ~ 1 — (R¥2)|Kk[?, k-0 (1.5)
On substituting (1.4) and (1.5) into Eg. (1.1), we obtain
1

p(k, ) ~ p=(k, \) = AN-0 k-0

N\ + Dk2’
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where
D = (R/2)/T)
This is nothing but the Fourier—Laplace transform of the Gauss distribution
p(x, t) = (4wDt)~™? exp{ —x%/(4Dt)} (1.6)
obeying the ordinary diffusion equation

D pap(x, 9 + 5095(0) 17)

where 8(x) and 3(t) are m-dimensional and one-dimensional Dirac functions,
respectively. We will call Eg. (1.6) the ordinary diffusion distribution (ODD).
The width of the ODD increases in the fashion t¥2.

If one or both of values (1.2) and (1.3) are infinite but the correspond-
ing conditions

J p(x) dx ~ Ar~¢, r-o 0<a<2 (1.8)
[x|>r

and
J q(7) dr ~ Bt™B, to-oo 0<B<1 (1.9
t

hold, we obtain a model of anomalous diffusion, for which a complete set
of solutions has not been found. The aim of this article is to fill the gap.

2. STABLE DISTRIBUTIONS

Let usrecall somefactsfrom the stablelaw theory. A spherically symmet-
ric, mdimensional stable density with the characteristic exponent «, g%(x),
is defined by its characteristic function

6909 = |

g dx = e M, 0<a=2 (2.1)
Rm

The backward transformation of (2.1) can be performed in terms of elementary
functions in two cases only:

9P () = (4m)~™2 exp{ — |x|?/4}
which is the Gauss distribution, and
gV = T((m + 1)/2)[w(1 + [x[3)] MD72

which is the Cauchy distribution. The rest of the densities are expressed in
terms of Bessal functions [33]
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o

g0 = (Zw)-mf & =3z 1(SIX)(SK)E ™2™ ds
0

With this integral representation, the two following series are useful:

e O & Den + my2) ()T

@y — 2 2 N gy L((2n + m)/a) x| .
90 = (M ™ X ) T+ 1) | 2
The first converges for o € (0, 1) and is asymptotic for « € [1, 2), the
second on the contrary, converges in the range « € [1, 2] and is asymptotic
fora € (0, 1).

The main reason stable laws arise in the diffusion problem is that they
play the same limit role by summing independent random variables with an
infinite variance as the Gauss law in the case of a finite variance.

If m-dimensional independent vectors Ry, . . ., R, have common spheri-
cally symmetric density p(x) obeying condition (1.8), then a sequence of
positive numbers a,, can be found such that the normalized sum

Z, = Xnlay, anglR

will be distributed according to the m-dimensional symmetric, stable density
gR0) asn — oo

Prob{Z, € dx} - g¥(x) dx, n- o (2.2
The segquence can be chosen in the form
a, = af()n'

where ai™(«) is calculated in the Appendix.

Thefamily of stablelawsisnot exhausted by the symmetric distributions
[26]. For example, the family of standardized one-dimensiona stable laws
is atwo-parameter set of distributions gi*?(t). The parameter 6 characterizes
the degree of asymmetry: if 6 = O, then the distribution is symmetric. If a <
1 and 6 = 1, then the distributions are concentrated on the positive semiaxis
only (so-caled one-sided stable distributions), One of them is known as the
Smirnov (or Lévy) distribution:

1
ggﬂzl)(t) - = t73/2efll(4t), t>0
2w

The other one-sided distributions are not expressible in terms of elementary
functions, but their Laplace transforms
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gfd(N) = J CeNgpomdt=e’, >0 (2.3)

0
and Méellin transforms
oP(s) = J tsg® () dt = (A — s/B)T (1 — 9
0

are written in a simple form. The following relation is easily proved with
the use of the preceding equality:

| aemge e o = porongpnie ) (2a)
0

The density g(t) can be represented in the form of a convergent series
forany t > O,
S (=

1
BD) = —
gt - ngl ni

' + nB) sin(nmR)t "1

There exists also an asymptotic series ast - 0 [26], the leading term of
which has the form

g o(t) ~ at™ exp{ —bt?} (2.5)
where
a=[2m(1 — p)] VPR
vy=@1- B2~ p)
b=(1-p)p°
5 =p/(1-p)
If independent variables T, ..., T, € R} have a common distribution

density q(t) satisfying condition (1.9), then a sequence of positive numbers
b, exists such that the normalized sum

is distributed according to the one-sided stable law g*P(t) asn — o
Prob{t= 0@, <t+dt} - gt dt, n- (2.6)
It is known [26] that b, can be chosen in the form
by = by(B)n"*
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with
by(B) = [BI'(1 — B)]"*

3. ASYMPTOTIC SOLUTIONS OF MW PROBLEM

Let us return to the MW problem.

According to the Tauberian theorem (see, for example, ref. 8) the asymp-
totic expressions (1.8) and (1.9) provide the following behavior of transforms
p(k) and g(\) at small arguments:

I'(m2I'1 — o/2)
I'((a + M)/2)
1—-qg\) ~BA\, N0, B =T(1-B)B

Three cases arise in addition to the normal case considered above:

A.1—pk) ~ A’k 1 — g\) ~ (TH\.

B.1 — pk) ~ (R/2)|k|]>, 1 — g(\) ~ B'\P.

C.1— pk) ~ A'|kl*, 1 — g(\) ~ B'AB,

Substituting these expressions in Eg. (1.1) we obtain respectively

1 - pK) ~ A'lk

k- 0, A =2"°A

1 A
2S _ — = —_—
pa(k, \) X+ DA Da T (3.1
- _ AP~L _(R2)
pB(k7 )\) - )\B + DB|k|21 DB - Br (32)
AB~L A
2S = e = —_—
pC(k1 )\) )\B + Dc|k|a ’ DC B’ (33)

On reversing the Laplace transformation in the case (3.1)

as, — i t—d)\
PRt D =55 L e Dk

= exp{ —DalKt}

we readily arrive at the characteristic function (2.1) of the m-dimensional,
spherically symmetric stable distribution with the characteristic exponent «
describing the subdiffusion behavior

PR(X, 1) = (Dat) "™ g (X(Dat) ) (34)

The variance of the distribution diverges and cannot be used for description
of the width of the diffusion packet. But it is clear from Eq. (3.4) that the
width grows with t by the law tY¢, o < 2, i.e., faster then in the normal case.
Therefore we observe superdiffusive behavior.
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The two other transforms (3.2) and (3.3) can be represented in the
same form,

Pk ) = 207 expl~[x° + DIkl o
0
On reversing the Laplace transformation
p=(k, t) = j dy e‘D|k|“y(2¢ri)‘1J d\ AB~L exp{At — APy}
0 L

taking the inside integral by parts
f oA NPl = —(By)lf elde ™ = t(By)lj e NN gy

and making the change of variable
s = yUB\

we obtain

Pk 1) = Bt J Y e—D'kl“yy—l—ﬂB[(zwi)-lf ey s ds]
S

0

Asisclear from Eqg. (2.3), the square brackets contain the one-sided density
g (ty~V®), so the expression can be rewritten in the following way:

pEk 1) = J exp{ —D|K|“t®/m8} gFV() dr
0
The inverse Fourier transformation leads to the final result:
P 1) = (DF) T EA(XI(DE) ) (35)

where

©

o) = | ar e e (36)

0
and

D= DB if a=2
N DC |f 0L<2

As one can see from Eq. (3.5), the law of the diffusion packet spreading is
determined by the ratio B/a: the process has superdiffusive behavior if g >
o/2 and subdiffusive behavior if B < «/2. We will cal (3.6) the anomalous
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diffusion distribution (ADD). When B = «/2 the width of the diffusion packet
grows in time as in the normal case, but its form differs from Gaussian and
depends on «.

The ADDs can be obtained in a simple way as a result of (2.2) and
(2.6). Let N(t) be a random number of jumps in time t. The position of the
particle at thetimet is

N(t)
X(t) = Zl R

According to (2.2), the conditional probability is given by

P{X() € dXIN(t) = n} ~ gP(da)a;™ dx (3.7)
with

a, = a” ()™

If (T) < oo, then N ~ t/T) ast —» « and we arrive a Eq. (3.4). If (T) =
o, but the condition (1.9) holds, then the probability

W, = Prob{N(t) = n} = Prob{}n: T < t} - Prob{ni:1 T < t}
i=1 i=1

is expressed in terms of densities g* as follows:
Wy ~ nBigP(togb,, - e
with
b, = bl(E’)nl/[3
Now, averaging Eq. (3.7) over all possible numbers of jumps
P(x. §) = 2, g(daan "W,
and passing from summation to integration with respect to T = t/b,, we

readily get Egs. (3.5) and (3.6).

4. FRACTIONAL DIFFUSION EQUATIONS

There exist different constructions of fractional derivatives [15, 19,
20]. We recall here only two which will be needed below. The first is the
Riemann—Liouville derivative
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" . 1 d tf(r) dr
510~ g al e

Because the integral is nothing but the convolution of the functions f (t) and

L _[tr t>o0
t*”‘{o, t<0

h(t) = Jt t—7) () dr =) Otz*  t>0

0
its Laplace transform has the form
h(\) = r e Mh(t) dt = f(\) r tTre Mdt = AL - p)
0 0
It is easy to see now that
r e MDb, f(t) dt = A (N) 4.
0

The second kind of fractional derivative we will use below is given by
the m-dimensional Riesz operator,

(~8)"21 (9 =

1 J A'yf(x)dy

Omi(v) Jgm [y™
wherel > o, x € R™ y € R™,
! [
A = (D, |f(x— ky)
k=0 K
and

%m=j

R

1 — ey~ dy
One can show [20]
J ek m(—A)"2f (x) dx = |K|*f (K) 4.2
Rm

wheref (K) is the Fourier transform of the function f (x). The formula general-
izes the relation
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J ERAF (x) dx = —Kk2f (K)

where A is the m-dimensiona Laplacian.
Now, if we rewrite Eg. (3.1) in the form

Ap=(k, \) = —DIKk[*p=(x, t) + 1
and invert the Fourier—Laplace transform using the relation (4.2), then we
obtain the fractional superdiffusion equation

—api(:" Y — DAy 1)+ 50980 (4.3)

Applying such a procedure to Egs. (3.2) and (3.3) with the use of Eq. (4.1)
we get the eguation

t

B nas — D — A¥2n3s

L P(X, 1) D(—A)*p(x, t) + =9 3(X) 4.9
which gives the fractiona subdiffusive equation in the case « = 2:

-
DG+ p™(x, t) = DAP™(x, 1) + Ta=p) 3(X) (4.5)
Writing (4.4) in a more general form,
t Bty

DB Yp=(x, t) = —DDo(—A)*2p™(x, t) + 3(X) (4.6)

r-pg+v

and setting herey = B — 1 or vy = 3, we obtain two more special forms of
the equation:

P Y _

o = ~DDER(=A)"3p(x, 1) + AKB() (4.7)
P(x, t) = —DDgP(—A)2p™(x, t) + 3(X) (4.8)
According to ref. 20,
1 d

Doff(t) =

Ti+p) dtJ f(r)(t—7)Pdr

Tt —7)F 1dr
r(B)ff()(t -1

=15 f()

is afractional integral of order (.
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Equations (4.6)—(4.8) generalize the ordinary diffusion equation (1.7)
to the case of anomalous diffusion.

5. ANOMALOUS DIFFUSION DISTRIBUTIONS

Thefollowing properties of the obtained ADDs can bemoreor lesseasily
established via the relations given in Section 2 and some simple arguments.
1. The densities ¥&)(r) and TP(r) are linked via the relation

dweB(r
i = 55 0

2. Similarly to the normal case, the projection of a diffusible m-dimen-
sional vector X(t) on an m’-dimensional subspace (m’ < m) diffuses according
to an m'-dimensional law with the same parameters o and £.

3. In contrast to the normal case, different coordinates Xy(t), . . . , X(t) of
a particle performing anomal ous diffusion are not independent of each other.

4. The ADD ¥&P)X(r) is a decreasing function of r and its maximal
value ¥&#)(0) is finite only if m < a:

T + Ml — ma)

VPO = G+ m2)ra - el
In particular,
() — AT
O = Gra - i

5. Inthe case B = 1, the ADD becomes the stable distribution:
WEI() = gR()

6. 1fa =2and B < 1, then

wER() = [2I(1 - B/

V&) ~ [2nT(L — B)] YInr|, r -0
and form= 3

WER(r) ~ (4m) ™ C(M/2 — )/T(1 — B)](r/2)~ ™2, r-0
7. At large distances
\P%,B)(r) ~ (4,“.)7m/2(2 _ B)*l/ZB[(erl)B/Zfl]/(ZfB)

X (r/2)~mA-BIC=B) exp{ —(2 — B)BFC P[22 B}  (5.1)
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8. In the one-dimensional case with a = 2 the expression (3.6) is
essentially ssimplified due to (2.4):

WER() = B g 2) 52
Setting 3 = 1, we obtain
‘If(lz’l)(r) _ 1 e 14
Jam
andinthecase g = 2/3

WERr) = = JTas(2r 1/ 20)

9.Inthecasea = 1, B = 1/2 the ADDs of all dimensions are expressed
in terms of the incomplete gamma function:

2 T((m+ 1)/2)
\/; (4,n.)(m+1)/2

PEU2(p) = &740(1 — (m + 1)/2, r%4)

For odd dimensions

pauagy — 2 T(m + 1/2) (r_Z

\/; ( 411.) (m+1)/2 4

where p = 1 — (m + 1)/2.
10. The Mdllin transform of the ADD is of the form

w
) € 2/4E(m+ yr(r ’14)

Wiab)(s) = J WEB(r)rs- dr
0

2T — (m — 9)/)T(FAT((M — s)/a)
© a@m)™T(1 — (m — s)B/)L((M — 9)/2)

11. When oo = 2

T'(h + 2T + 1)
T(M2)T(nB + 1)

Xy = (4DtP)" (5.3)

One-sided stable densities g(t) and superdiffusion distributions
WD(r), being merely the spherical symmetric stable densities
YED(r) = gfi(r)

can be found in ref. 26. Subdiffusive distributions W&#)(r) for m = 1, 2, and
3 are plotted in Figs. 1-3.



Montroll-Weiss Problem 2099

02

0 1 2

r
Fig. 1. One-dimensional anomalous diffusion distributions ¥3P(r) for B = 1/3, 1/2, 2/3,
5/6, and 1 (the normal distribution).

.0
\PZ

0.2

0.1

o] 1 2

i
Fig. 2. Two-dimensional ADDs ¥£)(r) for the same values of B asin Fig. 1.
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$ &P
\\ B=1A
0.05
B=1
0 1 2,

Fig. 3. Three-dimensional ADDs ¥£P)(r) for the same values of B asin Fig. 1.

6. FOX FUNCTION REPRESENTATION OF ADDs

The Fox function or H-function, also called the generalized G-function or
generaized Mellin—Barnesfunction, isageneral function of hypergeometrical
type[9, 14, 24]. It representsarich class of functionswhich contains functions
such as Meijer’'s G-function, hypergeometric functions, Wright's hypergeo-
metric series, Bessel functions, Mittag—L effler functions, etc., asspecial cases.

Let m, n, p, and q be integer numberssuchthat 0 = n=pand 1 =
m = g. The Fox function of order (m, n, p, q) isdefined by the Mellin—-Barnes
type integral

mn (@, 1) - (@n, an)  (Bnew s - (ap, ap) _ i
Hpq<z (bl: Bl) . (bm! Bm) (bm+l: Bm+1) e (bq, Bq)) i Jc h(S)ZS ds
where
_ A(9B(9
A CERTE

A9 = 110 - B9
L

B(s) = j]ﬂ[l IF'd-a + o9
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j=m+1

D(s) = i I'(ay — o;9)

j=n+1

and empty products are interpreted as unity. The parameters ay, ..., ap,
B1, ..., Bq are positive numbers and ay, ..., a,, by, ..., by are complex
numbers satisfying

Otj(bk + V) + Bk(aj -1- )\)

forv,\=0,1,...;k=1,...,mj=1 ...,n Here Cisacontour in
the complex s-plane separating the polesin such away that the poles of A(S)
lie to the right and the poles of B(s) lie to the left of the contour.

Let

q p
n= E B — 2 Q;
1 =1
and
P q
= I o [I B®
j=1 j=1

The Fox function is an analytic function of z (i) for every z # 0 if . > 0
and (i) for 0 < |z < B~*if w = 0. In general, the Fox function is multiple
valued due to the factor Zintheintegral representation, but it issingle valued
on the Riemann surface of In z

The theorem of residues enables ones to express the Fox function as
the infinite series

RV G2
e = 3 3 55
where
As(%k)B(%k)

= C(s0D(s0



2102 Uchaikin

and

m

A = I Tl - B9

1=1,1#j

Using these facts together with those cited in Sections 2 and 5, one can
easily represent stable distributions and ADDs in terms of Fox functions:

g‘(l - m2, 1/2)(1, 112))
; :

(1, Vo) a<l

W0 = o) = 5 /) |
(6.1)
(l—mlot,ZIa)) w=1
©, (1 — M2, 1) 62

2
w0 = g0 = 2 eym

dn ol Ghl) o<

wigo(r) = £ (4w>“2(§)

B
o

a<l

(-1, Va)(L — (a + M2, B2)(L — /2, 1/2)
0, Va)(—1, Vo) ’

(1, Va)(1, Blar)
(1, Va)(mV2, U2)(1, 1/2)

@, B/2)
(1, 12)(m/2, 1/2)) (6.3)

PEB(r) = (ar J/m)"™H gg(% ) l=a<?2

WEP(r) = (2r/m) ™ %8(%

7. CONCLUDING REMARKS

The main result of this article is represented by equations (4.6)—(4.8),
their solutions (3.5), (3.6) with the properties discussed in Sec. 5 and results
of numerical calculations (Sec. 7). But specia cases were considered in the
works published by different authors in the last decade or so. Let usindicate
some of them.

The first supposition about the fractional kind of the equation similar
to (4.3) for description of diffusion in a turbulent medium was made in
[Monin, 1995]. Weissman and coworkers [Weissman et al., 1989] note that
the approximation (5.1) was found by Daniels [Daniels, 1954]. The result
(5.2) was obtained in [Tunaley, 1974]. A specia version of Eq. (4.8) for
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a = 2 and m = 1 was derived by Baakrishnan [Balakrishnan, 1985] (see
also [Barkai, 2000]). The one-dimensional version of Eq. (4.5) coincides
with Eq. (2.1) of the work [Wyss, 1986] and with Eq. (27) of the work
[Nigmatullin, 1986]. Eg. (4.8) with « = 2, (5.2) and (6.3) are considered
in [Schneider & Wyss, 1989] (Egs. (3.1); (3.17) and (2.14) with k = 0
correspondingly). Fourier transform (3.3) is in agreement with formula (57)
of thework [Afanasiev et al., 1991]. In the one-dimensional case, the distribu-
tions (6.1) and (6.2) coincide with symmetrical densities following from Egs.
(2.15) and (2.12) of the work [Schneider, 1986]. For m = 1 equation (3.4)
corresponds to Eq. (20) of the work [Schlesinger et al., 1982] and in the
case of many dimensions it is obtained in [Hilfer, 1995]. Egs. (13)—(15) of
the work [Compte, 1996] are specia cases of our equation (4.6) up to nota-
tions. Egs. (38) and (39) from [Compte et al., 1997] are three-dimensional
versions of our equations (4.5) and (4.3) correspondingly. Eq. (20) of the
work [West et al., 1997] coincides with one-dimensional version of our Eq.
(4.7) under conditionsa = 2and B = 1 — B’. In the one-dimensional case
Eq. (4.4) reduces to Eg. (6.6) of the work [Zaslavsky, 1994] being written
for symmetrical diffusion, and Egs. (3.5)—(3.6) are in agreement with Egs.
(36) and (38) of the work [Kotulski, 1995]. Such agreement takes place with
other one-dimensional results obtained in works [Mainardi, 1999, Saichev,
1997] and others.

Notice that the incorrect notation for fractional derivative in [West et
al., 1997] (see formulas (19)—(20) in [West et al., 1997]) led the authors to
the incorrect conclusion that the case 3’ < 1 correspondsto the superdiffusive
regime. The assertion that the fractional diffusion eguations have solutions
in the form of Gaussian density with a rectified variance (formula (20.12.4)
of the book [Klimontovich, 1995]) does not correspond to the facts.

APPENDIX: EVALUATION OF a,

Let X be an m-dimensional random vector with spherically symmetric
distribution such that

Ar—e > Al
PfOb{|X| > r} = {1 r< A]Ja

Its characteristic function ¢(k) is of the form

ox(k) = J ep(x) d™

|x|>Ale

('}

= 2M2- 1 AT(MV2) K| J 7™ - 1(8) dé

|k|A]Joc
On integrating by parts, we bring the integral to the form
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j T ey, ) d
|

k‘A]JOL
= o H([K[AYe)memm2g L, (kAT
S R O
|

k‘Aﬂu

~ [2" AT (MV2)] |k~ — o r £ I (€) i,
0

\k| -0
Hence,

ox() ~ 1 — 2 IAT(m2) Ko J " gammena ey de

0

T(M2)T(1 — a/2)
T(m + @)2)

and the characteristic function of thesum S, = 2L, X is

TM2)TA — «f2)
T(m + a)/2)

Comparing the characteristic function of the normalized vectorial sum Z, =
Sh/an

=1-27A e, |k -0

n
¢s,(K) ~ [l —27°A ]k\“] , k| - 0

ez,(k) = ¢s(Ka), n-
with the limiting form (10), one finds out that

Vo
e gy — L[ 2 2TA — ol2)
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